A new framework for multi-parameter regularization
نویسندگان
چکیده
This paper proposes a new approach for choosing the regularization parameters in multiparameter regularization methods when applied to approximate the solution of linear discrete ill-posed problems. We consider both direct methods, such as Tikhonov regularization with two or more regularization terms, and iterative methods based on the projection of a Tikhonov-regularized problem onto Krylov subspaces of increasing dimension. The latter methods regularize by choosing appropriate regularization terms and the dimension of the Krylov subspace. Our investigation focuses on selecting a proper set of regularization parameters that satisfies the discrepancy principle and maximizes a suitable quantity, whose size reflects the quality of the computed approximate solution. Theoretical results are shown and illustrated by numerical experiments.
منابع مشابه
A Mathematical Analysis of New L-curve to Estimate the Parameters of Regularization in TSVD Method
A new technique to find the optimization parameter in TSVD regularization method is based on a curve which is drawn against the residual norm [5]. Since the TSVD regularization is a method with discrete regularization parameter, then the above-mentioned curve is also discrete. In this paper we present a mathematical analysis of this curve, showing that the curve has L-shaped path very similar t...
متن کاملLarge-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملAdaptive multi-penalty regularization based on a generalized Lasso path
For many algorithms, parameter tuning remains a challenging and critical task, which becomes tedious and infeasible in a multi-parameter setting. Multi-penalty regularization, successfully used for solving undetermined sparse regression of problems of unmixing type where signal and noise are additively mixed, is one of such examples. In this paper, we propose a novel algorithmic framework for a...
متن کاملMulti-parameter regularization and its numerical realization
In this paper we propose and analyse a choice of parameters in the multi-penalty regularization. A modified discrepancy principle is presented within the multi-parameter regularization framework. An order optimal error bound is obtained under standard smoothness assumptions. We also propose a numerical realization of the multi-parameter discrepancy principle based on the model function approxim...
متن کاملManifold learning via Multi-Penalty Regularization
Manifold regularization is an approach which exploits the geometry of the marginal distribution. The main goal of this paper is to analyze the convergence issues of such regularization algorithms in learning theory. We propose a more general multi-penalty framework and establish the optimal convergence rates under the general smoothness assumption. We study a theoretical analysis of the perform...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015